These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-affinity [3H]PN200-110 and [3H]ryanodine binding to rabbit and frog skeletal muscle.
    Author: Anderson K, Cohn AH, Meissner G.
    Journal: Am J Physiol; 1994 Feb; 266(2 Pt 1):C462-6. PubMed ID: 8141261.
    Abstract:
    In vertebrate skeletal muscle, the voltage-dependent mechanism of sarcoplasmic reticulum (SR) Ca2+ release, commonly referred to as excitation-contraction (E-C) coupling, is mediated by the voltage-sensing dihydropyridine receptor (DHPR), which is believed to affect SR Ca2+ release through a physical interaction with the SR ryanodine receptor (RYR)/Ca2+ release channel. Scatchard analysis of ligand binding of [3H]PN200-110 to the DHPR and [3H]ryanodine to the RYR indicated the presence of high-affinity sites in muscle homogenates, with maximum binding (Bmax) values of 72 +/- 26 and 76 +/- 30 pmol/g wet wt for rabbit skeletal muscle, and 27 +/- 14 and 44 +/- 13 pmol/g wet wt for frog skeletal muscle, respectively. The Bmax values corresponded to a PN200-110-to-ryanodine binding ratio of 0.98 +/- 0.26 and 0.61 +/- 0.24 for rabbit and frog skeletal muscle, respectively, and were found by Student's t test to be significantly different (P < 0.02, n = 7). These results are compared with measurements with isolated rabbit skeletal muscle membrane fractions and discussed in relation to our current understanding of the mechanism of E-C coupling in skeletal muscle.
    [Abstract] [Full Text] [Related] [New Search]