These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Estrogen action on hepatic synthesis of angiotensinogen and IGF-I: direct and indirect estrogen effects. Author: Krattenmacher R, Knauthe R, Parczyk K, Walker A, Hilgenfeldt U, Fritzemeier KH. Journal: J Steroid Biochem Mol Biol; 1994 Feb; 48(2-3):207-14. PubMed ID: 8142296. Abstract: In the present study effects of estrogens (natural estradiol and synthetic ethinyl estradiol) on liver derived proteins (angiotensinogen, IGF-I) were investigated in vivo in ovariectomized rats and in vitro in a rat hepatoma cell line (Fe33). The aim of this study was to establish both an animal and an in vitro model for quantification of the hepatic activity of given estrogenic compounds, and to study underlying mechanisms as regards the question of direct or indirect mode of estrogen action. In ovariectomized rats subcutaneous (s.c.)-treatment for 11 days with either estradiol (E2) or ethinyl estradiol (EE) (dose range 0.1-3 micrograms/animal/day) induced a comparable dose-dependent increase in uterine weight indicating a similar estrogenic potency of the two estrogens. Equipotency was also found as regards the effects on IGF-I plasma levels which dose-dependently decreased by about 50% at the highest dose tested (3 micrograms/animal/day). The decrease in IGF-I serum levels was accompanied by a significant 40% decrease in liver IGF-I mRNA. In contrast angiotensinogen plasma levels were affected only by EE (60% increase for the 3 micrograms/animal/day dose) but not by E2. When rats, in addition to ovariectomy, were also hypophysectomized (substituted with human growth hormone and dexamethasone) angiotensinogen again increased by 80% upon administration of 3 micrograms/animal/day EE, whereas IGF-I remained unaffected by EE. In a rat hepatoma cell line (Fe33) which is stably transfected with an estrogen receptor expression plasmid, 10 nmol/l EE for 24 h caused a 2.4-fold increase in angiotensinogen mRNA level. We conclude from our studies that estrogen effects on angiotensinogen serum levels in the rat are direct effects via the hepatic estrogen receptor, whereas estrogen effects on IGF-I serum levels are indirect effects, the primary target of estrogen action being probably the pituitary. The changes in angiotensinogen serum levels in the rat model are comparable to the situation in humans indicating the rat model and the Fe33 model to be useful tools to study the hepatic activity of estrogenic compounds.[Abstract] [Full Text] [Related] [New Search]