These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of osmotically-activated potassium transporters after injection of mRNA from A6 cells in Xenopus oocytes.
    Author: Ratcliff FG, Ehrenfeld J.
    Journal: Biochim Biophys Acta; 1994 Mar 23; 1190(2):248-56. PubMed ID: 8142423.
    Abstract:
    The different potassium pathways, under iso-osmotic or hypo-osmotic conditions, were examined in Xenopus oocytes that were micro-injected with mRNA from A6 cells. Hypo-osmotically stimulated 86Rb (K+) effluxes could be measured from intact oocytes 1-4 days after injection of 25 ng of poly (A)+ RNA isolated from A6 cells. 86Rb (K+) effluxes were 2.2 times higher from oocytes micro-injected with 25 ng of poly(A)+ RNA, than from water injected control oocytes. Water-injected oocytes themselves, however, were 7-fold more responsive to a hypo-osmotic shock than non-injected Xenopus oocytes. There was no significant effect of the different K+ transport blockers tested (TEA, bumetanide, glybenclamide or quinidine) on the endogenous 86Rb (K+) effluxes from non-injected oocytes in either iso- or hypo-osmotic media. The 86Rb (K+) effluxes from water-and mRNA-injected oocytes in hypo-osmotic media were both inhibited by TEA. In mRNA-injected oocytes the increase in 86Rb (K+) transport following a medium dilution was also inhibited in the presence of glybenclamide or bumetanide. The present study reports that the activation of hypo-osmotically-activated potassium transporters in the oocytes of Xenopus laevis. after injection of mRNA from A6 cells differs quantitatively and in part qualitatively (glybenclamide-sensitivity) from the endogenous K+ pathways of non-injected and of water-injected Xenopus oocytes.
    [Abstract] [Full Text] [Related] [New Search]