These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Vestibulo-oculomotor connections in an elasmobranch fish, the Atlantic stingray, Dasyatis sabina.
    Author: Puzdrowski RL, Leonard RB.
    Journal: J Comp Neurol; 1994 Jan 22; 339(4):587-97. PubMed ID: 8144748.
    Abstract:
    In elasmobranch fishes, including the Atlantic stingray, the medial rectus muscle is innervated by the contralateral oculomotor nucleus. This is different from most vertebrates, in which the medial rectus is innervated by the ipsilateral oculomotor nucleus. This observation led to the prediction that the excitatory vestibulo-extraocular motoneuron projections connecting each semicircular canal to the appropriate muscle should use a contralateral projection from the vestibular nuclei to the motoneurons. This hypothesis was examined in the Atlantic stingray by injecting horseradish peroxidase unilaterally into the oculomotor nucleus. It was found that vestibulo-oculomotor projections arise from the ipsilateral anterior octaval nucleus and the contralateral descending octaval nucleus. The same pattern was observed when the trochlear nucleus was involved in the injection. There were no cells labeled in the region of the abducens nucleus, and no candidate for a nucleus prepositus hypoglossus was identified. The presence of compensatory eye movements, the directional sensitivity of the semicircular canals, the location of the motoneurons innervating each eye muscle, and our results indicate that the excitatory input to the extraocular motoneurons is derived from the contralateral descending octaval nucleus, and the inhibitory input is derived from the ipsilateral anterior octaval nucleus. The absence of both abducens internuclear interneurons and a nucleus prepositus hypoglossus suggests that eye movements, particularly those in the horizontal plane, are controlled differently in elasmobranchs than in other vertebrates examined to date.
    [Abstract] [Full Text] [Related] [New Search]