These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regional reward differences within the ventral pallidum are revealed by microinjections of a mu opiate receptor agonist.
    Author: Johnson PI, Stellar JR, Paul AD.
    Journal: Neuropharmacology; 1993 Dec; 32(12):1305-14. PubMed ID: 8152522.
    Abstract:
    The ventral pallidum receives a major projection from the nucleus accumbens, a heavily studied terminus of the mesolimbic dopamine system that is known to be involved in a variety of reward and behavioral functions. Recently, ventral pallidum microinjections of the mu opiate receptor agonist Tyr-D-Ala-Gly-NMe-Phe-Gly-ol-enkephalin (DAMGO) have been shown to increase motor activity while ventral pallidum lesions have been shown to reduce opiate and cocaine self-administration behaviors. These results suggest a possible continuation of the mesolimbic reward/motor circuit from the nucleus accumbens into the ventral pallidum. This study investigated the effects of ventral pallidum DAMGO microinjections on reward and motor/performance through the use of the intracranial self-stimulation rate-frequency curve-shift paradigm. Microinjections of DAMGO (vehicle, 0.03 nmol, and 0.33 nmol) were administered bilaterally in a random dose order with a minimum of 3 days between injections. Rats were tested over three consecutive rate-frequency curves immediately following the opiate microinjections to investigate the time course of drug effects. DAMGO microinjections in the rostral ventral pallidum produced decreases in reward and motor/performance when compared to normal baseline activity or vehicle microinjections. In contrast, DAMGO microinjections into the caudal ventral pallidum produced increases in reward and motor/performance. These data confirm a role for the ventral pallidum in limbic function and extend it to intracranial self-stimulation reward. They also suggest reward modulation in the ventral pallidum is a regionally heterogeneous function and that the rostral ventral pallidum may be a transition area between the nucleus accumbens and the ventral pallidum.
    [Abstract] [Full Text] [Related] [New Search]