These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Re-examination of hexose exchanges using rat erythrocytes: evidence inconsistent with a one-site sequential exchange model, but consistent with a two-site simultaneous exchange model. Author: Naftalin RJ, Rist RJ. Journal: Biochim Biophys Acta; 1994 Apr 20; 1191(1):65-78. PubMed ID: 8155685. Abstract: (1). The kinetic parameters of zero-trans net uptake and infinite-trans uptake of 3-O-methyl-D-glucoside, 2-deoxy-D-glucose and D-mannose into rat red cells at 24 degrees C were measured after taking account of the linear diffusion components of flux. (2). Zero-trans exists of 3-O-methyl-D-glucoside and D-mannose from rat cells were also measured. (3). After correction for linear flux via non-specific routes, the Vmax of zero-trans uptake of 3-O-methyl-D-glucoside was significantly higher, (1.25 +/- 0.06 mumol (10 min)-1 (ml cell water)-1) than the corresponding parameters of mannose or 2-deoxy-D-glucose, (0.33 +/- 0.01 and 0.39 +/- 0.01 mumol(10 min)-1 (ml cell water)-1, respectively; P < 0.001). (4). After correction for linear flux via non-specific uptake routes, the Vmax of zero-trans exit of 3-O-methyl-D-glucoside is significantly higher (1.70 +/- 0.1 mumol (10 min)-1 (ml cell water)-1) than the corresponding value for mannose exit flux, (1.10 +/- 0.1 mumol (10 min)-1 (ml cell water)-1; P < 0.001). (5). The acceleration ratio, i.e., the ratio of infinite-trans influx Vmax/zero-trans influx Vmax of mannose by mannose (9.12 +/- 0.03) is significantly higher than that of 3-O-methyl-D-glucose by 3-O-methyl-D-glucose (2.77 +/- 0.14)(P < 0.001). (6). The one-site simple carrier model of glucose transport in which sugar exchange is viewed as a sequential process, predicts that the acceleration ratio of the more rapidly moving sugar 3-O-methyl-D-glucose by 3-O-methyl-D-glucose should be greater than that of the slower sugar, mannose by mannose. Hence, the observed findings are inconsistent with the one-site model, but confirm the earlier disputed studies of Miller, D.M. (1968; Biophys. J. 8, 1329-1338). (7). A two-site model, in which sugar exchange is considered as a simultaneous process, predicts that the acceleration ratio of mannose influx by mannose should be higher than for 3-O-methyl-D-glucose by 3-O-methyl-D-glucose. The data are, therefore, consistent with a two-site model.[Abstract] [Full Text] [Related] [New Search]