These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A sense phosphorothioate oligonucleotide directed to the initiation codon of transcription factor NF-kappa B p65 causes sequence-specific immune stimulation.
    Author: McIntyre KW, Lombard-Gillooly K, Perez JR, Kunsch C, Sarmiento UM, Larigan JD, Landreth KT, Narayanan R.
    Journal: Antisense Res Dev; 1993; 3(4):309-22. PubMed ID: 8155973.
    Abstract:
    Antisense oligonucleotides have proved effective in achieving targeted inhibition of gene expression. In such experiments, sense oligonucleotides have frequently been used as a control for nonspecific effects, but the results have been variable, raising questions about the reliability of sense oligomers as a control. It is possible that some of the effects of sense oligonucleotides may be specific. We have shown that phosphorothioate antisense oligonucleotides to the p65 subunit of NF-kappa B, a transcription factor, cause a block in cell adhesion. In our efforts to test the efficacy of NF-kappa B p65 oligonucleotides in vivo, we unexpectedly observed that the control p65-sense, but not the p65-antisense, oligonucleotides caused massive splenomegaly in mice. In the current study we demonstrate a sequence-specific stimulation of splenic cell proliferation, both in vivo and in vitro, by treatment with p65-sense oligonucleotides. Cells expanded by this treatment are primarily B-220+, sIg+ B cells. The secretion of immunoglobulins by the p65-sense oligonucleotide-treated splenocytes is also enhanced. In addition, the p65-sense-treated splenocytes, but not several other cell lines, showed an upregulation of NF-kappa B-like activity in the nuclear extracts, an effect not dependent on new protein or RNA synthesis. These results demonstrate that phosphorothioate oligonucleotides can exert sequence-specific effects in vivo, irrespective of sense or antisense orientation.
    [Abstract] [Full Text] [Related] [New Search]