These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of human chorionic gonadotropin (hCG) and asialo-hCG with recombinant human thyrotropin receptor.
    Author: Hoermann R, Broecker M, Grossmann M, Mann K, Derwahl M.
    Journal: J Clin Endocrinol Metab; 1994 Apr; 78(4):933-8. PubMed ID: 8157724.
    Abstract:
    hCG is a putative thyroid stimulator. The present studies were undertaken to examine its interaction and that of its desialylated variant asialo-hCG with recombinant human TSH (hTSH) receptor (hTSHr). To this end, we transfected a human thyroid carcinoma cell line (HTC) lacking endogenous TSHr with the full-length cDNA of the hTSHr. Unlike the wild type, the transfected cells, termed HTC-TSHr cells, were able to bind bovine TSH (bTSH) with high affinity and increase cAMP production in response to bTSH stimulation. Of the hCG forms, intact hCG displayed a weak activity to inhibit [125I] bTSH binding to HTC-TSHr cells, with 100 mg/L (2.6 x 10(-6) mol/L) producing maximally a 20% inhibition, whereas asialo-hCG achieved half-maximum binding inhibition at a concentration of 8 mg/L (2.3 x 10(-7) mol/L). The inhibitory constant (Ki) of asialo-hCG for recombinant hTSHr was calculated from saturation experiments in the presence of variable doses of bTSH and a fixed concentration of asialo-hCG to be approximately 8 x 10(-8) mol/L. The interaction of asialo-hCG with TSHr was further assessed by studies of the direct binding of the radioactively labeled hormone to both HTC and HTC-TSHr cells. [125I]Asialo-hCG binding to HTC-TSHr cells was 4.7%, compared to 1.5% in the wild-type cells lacking TSHr and was displaceable by bTSH (0.1-100 IU/L), indicating specific binding of the tracer to TSHr. Functionally, hCG (up to 100 mg/L; 2.6 x 10(-6) mol/L) proved unable to evoke any significant cAMP response over basal values in HTC-TSHr cells, as did asialo-hCG. Asialo-hCG, but not hCG, inhibited bTSH-stimulated adenylate cyclase activity in the cells in a dose-dependent manner. In conclusion, the present data show that intact hCG binds only weakly to HTC-TSHr cells and produces no significant cAMP stimulation, which is at variance with data obtained in FRTL-5 and Chinese hamster ovary-TSHr cells, but in good accord with previous findings in human thyroid membranes. Asialo-hCG, on the other hand, strongly binds to recombinant TSHr and inhibits the cAMP response to bTSH in HTC-TSHr cells, indicating that the desialylated hCG variant directly interacts with the receptor and truly is an antagonist of the hTSHr.
    [Abstract] [Full Text] [Related] [New Search]