These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biochemical and spectroscopic characterization of a new oxygen-evolving photosystem II core complex from the cyanobacterium Synechocystis PCC 6803.
    Author: Tang XS, Diner BA.
    Journal: Biochemistry; 1994 Apr 19; 33(15):4594-603. PubMed ID: 8161515.
    Abstract:
    We describe here a new procedure permitting rapid (12-13 h) isolation of a pure oxygen-evolving photosystem II (PSII) core complex from the cyanobacterium Synechocystis PCC 6803. This procedure involves dodecyl maltoside extraction of thylakoid membranes followed by single-step column chromatography using a weak anion-exchanger. SDS-PAGE and immunoblotting show that the complex consists of five intrinsic membrane proteins (CP47, CP43, D1, D1, and cyt b559), one extrinsic protein (MSP), and one unknown protein with a molecular mass of approximately 26 kDa. A chemical and functional analysis, normalized to 2 molecules of pheophytin a, indicates that this PSII core complex contains 1 photoactive plastoquinone, QA, 4 manganese atoms, 38 chlorophyll a molecules, 1 cytochrome b559, 2 plastoquinone-9, and 9-10 beta-carotenes. The complex exhibits high rates of oxygen evolution, typically 2400-2600 mumol of O2 (mg of Chl)-1 h-1 in the presence of 2,5-dichlorobenzoquinone as an artificial electron acceptor with a pH optimum of 6.5. A strong light minus dark multiline EPR signal, arising from the S2 state of the oxygen-evolving complex (OEC), is observed at 10 K following illumination at 198 K. The determination of the absolute oxygen yield per saturating microsecond flash indicates that essentially all of the PSII centers contain functional oxygen-evolving complexes. This point is further supported by the absence of photoaccumulation, upon room temperature illumination, of the immediate oxidant of the OEC, redox-active tyrosine, YZ.. On the basis of EPR spectra, oxidized minus reduced difference spectra, and SDS-PAGE, the preparation contains on a per mole basis with PSII only trace amounts of PSI (approximately 0.04), cytochrome b6/f complex (< or = 0.01), and ATPase (< or = 0.05). All of these results indicate that this PSII preparation is to date the most highly purified oxygen-evolving core complex from Synechocystis 6803 that retains all of the reaction centers active for oxygen evolution. As Synechocystis 6803 is being used extensively for site-directed mutagenesis of PSII, this preparation is particularly valuable for spectroscopic and biochemical analyses of PSII from wild-type and from site-directed mutants.
    [Abstract] [Full Text] [Related] [New Search]