These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of repetitive and non-repetitive rat rDNA enhancer elements on in vivo transcription by RNA polymerases I and II. Author: Ghosh AK, Kermekchiev M, Jacob ST. Journal: Gene; 1994 Apr 20; 141(2):271-5. PubMed ID: 8163201. Abstract: Previous study has demonstrated that a far upstream 174-bp spacer sequence of the rat rRNA-encoding (rDNA) gene can function as an enhancer in vitro in an orientation- and distance-independent manner [Dixit et al., J. Biol. Chem. 262 (1987) 11616-11622]. To demonstrate that this element can also function in vivo, two rat rDNA-cat plasmids, one with the 174-bp element and the other without this sequence, were constructed and transfected into CHO cells. Primer extension analysis of the transcripts produced after transfection showed that transcription initiation occurred at the +1 site of the rDNA. The 174-bp sequence stimulated the rat polI promoter activity in cis 4-5-fold over the control (with the promoter alone). This RNA polymerase (polI) enhancer also stimulated the mouse metallothionein-I (MT-I) and SV40 promoter activities in vivo, irrespective of its distance and orientation. Further dissection of the 174-bp element revealed that the stimulatory activity on the RNA polymerase II (polII) promoter resides within the 37-bp and 43-bp domains at the 3' end of the 174-bp element. Unlike this spacer enhancer, the 130-bp repeat element (RE) proximal to the rat promoter [Ghosh et al., Gene 125 (1993) 217-222] was unable to modulate the polII promoter activity in vivo. These data show that while the non-repetitive enhancer sequence of rat rDNA is interchangeable for the polI and polII promoters, the RE is polI-specific.[Abstract] [Full Text] [Related] [New Search]