These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of the Na-H antiport by insulin: interplay between protein kinase C, tyrosine kinase, and protein phosphatases.
    Author: Incerpi S, Baldini P, Bellucci V, Zannetti A, Luly P.
    Journal: J Cell Physiol; 1994 May; 159(2):205-12. PubMed ID: 8163561.
    Abstract:
    The insulin modulation of Na-H antiport in rat hepatocytes was studied using the fluorescent, pH-sensitive intracellular probe, 2',7' bis (carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Our data show that insulin stimulates the Na-H antiport. The dose-response of insulin effect shows a behavior typical of other insulin responses: a maximum in the physiological range (1 nM) and smaller effects at higher and lower hormone concentrations. The time-course of activation is very fast at high hormone concentrations and slow, but reaching a higher value, for the physiological concentrations (0.26 +/- 0.05 and 0.18 +/- 0.022 pH units for 1 nM and 1 microM insulin respectively). The use of phorbol, 12-myristate, 13-acetate (PMA), a potent activator of protein kinase C and its inhibitor staurosporine, and the inhibitor of tyrosine kinase erbstatin analog, suggests that both protein kinase C and tyrosine kinase could be involved in the mechanism leading to Na-H antiport activation by insulin. We suggest that the activation of the antiport involves the two pathways depending on the hormone concentration. In particular, protein kinase C would mediate the effects of high hormone concentrations, acting as a growth factor, since staurosporine fully inhibited insulin 1 microM, but only partially 1 nM effects, and tyrosine kinase would mediate the effect of insulin 1 nM and only partially 1 microM. Okadaic acid 1 microM, a potent inhibitor of protein phosphatases, mimicked the hormone effects on the antiport and abolished the different time-course due to hormone concentration, suggesting a role of kinases and phosphatases in the signal transduction. The effect of all activators was abolished by amiloride analog, 5-(N-ethyl-N-isopropyl) amiloride (EIPA), confirming the specificity of these effects.
    [Abstract] [Full Text] [Related] [New Search]