These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Antiestrogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on 17 beta-estradiol-induced pS2 expression.
    Author: Zacharewski TR, Bondy KL, McDonell P, Wu ZF.
    Journal: Cancer Res; 1994 May 15; 54(10):2707-13. PubMed ID: 8168101.
    Abstract:
    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exhibits a broad spectrum of antiestrogenic activities in rodents and mammalian cells in culture. The effects of TCDD on 17 beta-estradiol (E2)-induction of pS2, a prognostic marker for breast cancer, were investigated in MCF-7, ZR-75, HeLa, and Hepa 1c1c7 wild-type and mutant cells. These effects were compared to the suppressive activities of the congener, 2,8-dichlorodibenzo-p-dioxin, and the established antiestrogens, ICI 164,384 and tamoxifen, in order to determine the relative potency of TCDD and to distinguish the mechanism of action of Ah receptor-mediated antiestrogens. Treatment of MCF-7 cells with 10 nM TCDD decreased E2-induced secreted pS2 protein levels by 50% and the induction of the transiently transfected -1100 to -86 pS2 promoter-regulated reporter gene (pS2-LUC) by 57%. Comparable effects on PS2-LUC activity were observed in HeLa and ZR-75 cells. In contrast, TCDD had minimal effects on pS2ERE(-405 to -393)-LUC induction, whereas treatment with 10 nM ICI 164,384 caused a 60% decrease in luciferase activity. In Hepa 1c1c7 wild-type and clone 1 (C1) mutant cells, TCDD also reduced E2 induction of pS2-LUC activity but had little effect in clone 4 (C4) or clone 12 (C12) mutant cells. However, suppression was reestablished following transfection of the human Ah receptor nuclear translocator (ARNT) complementary DNA expression vector into C4 cells and the mouse Ah receptor (AhR) complementary DNA expression vector into C12 cells. Induction of pS2-LUC activity by the ligand-dependent and -independent chimeric estrogen receptors (HE15, HE19, ERcVP16, and ERGR) were also used to examine the role of E2 metabolism and the mechanism of TCDD-mediated antiestrogenic activity. Induction by HE15 and ERcVP16 was suppressed by 57 and 74%, respectively, following treatment with TCDD, whereas ICI 164,384 was significantly less effective (38 and 20%, respectively). These results demonstrate a role for the Ah receptor in TCDD-mediated suppression of E2-induced pS2 expression. Data is presented demonstrating that the effect requires sequences within the pS2 promoter other than the estrogen response element and is independent of E2 oxidative metabolism.
    [Abstract] [Full Text] [Related] [New Search]