These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of cAMP-activated apical membrane chloride conductance in gallbladder epithelium. Author: Heming TA, Copello J, Reuss L. Journal: J Gen Physiol; 1994 Jan; 103(1):1-18. PubMed ID: 8169593. Abstract: Regulation of the cAMP-activated apical membrane Cl- conductance (GaCl) in Necturus gallbladder (NGB) epithelial cells was investigated with intracellular-microelectrode techniques. GaCl was increased by exposure to 8-Br-cAMP, theophylline or forskolin. Neither 8-Br-cGMP nor elevation of intracellular [Ca2+] using ionomycin had effects on GaCl or interfered with activation of GaCl by forskolin. N-(2-[methylamino]ethyl)-5-isoquinolinesulfonamide (H8), an inhibitor of cAMP-dependent protein kinase (PKA), slowed but did not prevent the GaCl response to 8-Br-cAMP. Phorbol 12-myristate 13-acetate (PMA), which activates protein kinase C (PKC), stimulated GaCl but had no effects on intracellular [cAMP]. GaCl was unaffected by 4 alpha-phorbol, a PMA analog which does not activate PKC. Okadaic acid (OA), an inhibitor of protein phosphatases (PP) types 1 and 2A, slowed the activation of GaCl by 8-Br-cAMP, hastened the return of GaCl to basal values following removal of 8-Br-cAMP, and significantly reduced the elevation in intracellular [cAMP] produced by forskolin. OA had no effects on the GaCl changes elicited by theophylline. We conclude that: (a) NGB GaCl can be activated by PKA-mediated phosphorylation of apical membrane Cl- channels or a regulatory protein, (b) GaCl can also be activated via PKC, by a cAMP-independent mechanism, (c) OA-sensitive PP are not required for inactivation of GaCl; OA appears to stimulate phosphodiesterase, which lowers intracellular [cAMP] and affects GaCl activation, and (d) the apical membrane of NGB epithelium lacks a Ca(2+)-activated Cl- conductance.[Abstract] [Full Text] [Related] [New Search]