These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Active-site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2.
    Author: Blanke SR, Huang K, Wilson BA, Papini E, Covacci A, Collier RJ.
    Journal: Biochemistry; 1994 May 03; 33(17):5155-61. PubMed ID: 8172890.
    Abstract:
    Diphtheria toxin (DT) has been studied as a model for understanding active-site structure and function in the ADP-ribosyltransferases. Earlier evidence suggested that histidine-21 of DT is important for the ADP-ribosylation of eukaryotic elongation factor 2 (EF-2). We have generated substitutions of this residue by cassette mutagenesis of a synthetic gene encoding the catalytic A fragment (DTA) of DT, and have characterized purified mutant forms of this domain. Changing histidine-21 to alanine, aspartic acid, leucine, glutamine, or arginine diminished ADP-ribosylation activity by 70-fold or greater. In contrast, asparagine proved to be a functionally conservative substitution, which reduced ADP-ribosylation activity by < 3-fold. The asparagine mutant was approximately 50-fold-attenuated in NAD glycohydrolase activity, however. Dissociation constants (Kd) for NAD binding, determined by quenching of the intrinsic protein fluorescence, were 15 microM for wild-type DTA, 160 microM for the asparagine mutant, and greater than 500 microM NAD for the alanine, leucine, glutamine, and arginine mutants. These and previous results support a model of the ADP-ribosylation of EF-2 in which histidine-21 serves primarily a hydrogen-bonding function. We propose that the pi-imidazole nitrogen of His-21 hydrogen-bonds to the nicotinamide carboxamide, orienting the N-glycosidic bond of NAD for attack by the incoming nucleophile in a direct displacement mechanism, and then stabilizing the transition-state intermediate of this reaction.
    [Abstract] [Full Text] [Related] [New Search]