These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pulsatile and nonpulsatile pressure-flow relationships in zone 3 excised rabbit lungs.
    Author: Saito O, Lamm WJ, Hildebrandt J, Albert RK.
    Journal: J Appl Physiol (1985); 1994 Jan; 76(1):370-9. PubMed ID: 8175531.
    Abstract:
    We compared the effects of pulsatile vs. nonpulsatile flow (Q) on pulmonary arterial pressure (Ppa)-Q relationships in zone 3 over wide ranges of pulse rate, stroke volume (SV), and Q. Excised left lungs of rabbits (n = 15) were perfused with tris(hydroxymethyl)aminomethane-buffered Tyrode solution containing 4% dextran, 1% albumin, and 10 mg/l of indomethacin and were ventilated with room air. Pulsatile Q was generated by a diaphragm pump delivering SV of 0.5, 1, or 2 ml (representing approximately 0.3, 0.6, and 1.2 times, respectively, the normal resting SV for rabbit left lung) and adjusting the pump frequency. Nonpulsatile Q was generated by raising an arterial reservoir to the required height. Mean pulmonary arterial (Ppa) and left atrial pressures were measured at end exhalation (positive end-expiratory pressure = 2.5 cmH2O) near the tips of the perfusion cannulas and were referenced to the lung base. Left atrial pressure was held constant at 7 cmH2O.Q was alternated between pulsatile and nonpulsatile, increasing Q stepwise from 100 to 600 ml/min (Q from approximately 0.3 to 2 times the normal resting Q for rabbit left lung), after which Q was reduced stepwise back to initial values. For the smallest SV there were no differences between Ppa-Q curves under pulsatile and nonpulsatile conditions. At the largest SV, Ppa was greater during pulsatile than nonpulsatile Q at Q > 100 ml/min. The slopes of the Ppa-Q curves were greater during pulsatile Q at the two larger SV values. These results can be explained by increasing Q turbulence and less ideal velocity profiles at higher peak Q resulting from the effects of rapidly changing inertial forces.
    [Abstract] [Full Text] [Related] [New Search]