These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Morphological, histochemical, and myosin isoform analysis of the diaphragm of adult horses, Equus caballus. Author: Cobb MA, Schutt WA, Hermanson JW. Journal: Anat Rec; 1994 Mar; 238(3):317-25. PubMed ID: 8179213. Abstract: The horse provides an interesting model for study of the structure and function of the mammalian diaphragm. Multiple regions of diaphragm from seven adult horses were prepared for histochemistry, immunocytochemistry, myosin heavy chain electrophoresis, and native myosin electrophoresis. Two additional adults were dissected to demonstrate myofiber and central tendon morphology and stained for acetylcholinesterase to demonstrate motor endplates. All regions of the adult diaphragm were histochemically characterized by a preponderance of type I fibers with some type IIa fibers. Type IIb fibers were absent in all adult specimens. Myosin heavy chain electrophoresis supported the histochemical study: two isoform bands were present on SDS gels that comigrated at the same rate as rat type I and IIa myosin heavy chain isoforms. No isoform was determined to comigrate with rat type IIb heavy chain isoforms. Native myosin isoform analysis revealed two isoforms that comigrated with rat FM-4 and FM-3 (FM = fast myosin) and two isoforms that comigrated with rat SM-1 and SM-2 (SM = slow myosin) isoforms. In some samples, a third slow native myosin isoform was observed that comigrated at the same rate as the SM-3 of the equine biceps brachii muscle. This doublet (or "triplet") of slow isoforms is unique to some horse muscles compared with other adult animals studied. It is not known if these multiple slow native myosin isoforms confer some functional advantage to the equine muscles. The adult equine diaphragm also differs in its morphology by having a large central tendon compared to that in other mammals, and is predominantly slow in fiber type and myosin isoform composition.[Abstract] [Full Text] [Related] [New Search]