These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Studies of the biogenic amine transporters. 1. Dopamine reuptake blockers inhibit [3H]mazindol binding to the dopamine transporter by a competitive mechanism: preliminary evidence for different binding domains. Author: Dersch CM, Akunne HC, Partilla JS, Char GU, de Costa BR, Rice KC, Carroll FI, Rothman RB. Journal: Neurochem Res; 1994 Feb; 19(2):201-8. PubMed ID: 8183430. Abstract: The present study addressed the hypothesis that the DA transporter ligand, [3H]mazindol, labels multiple sites/states associated with the dopamine (DA) transporter in striatal membranes. Incubations with [3H]mazindol proceeded for 18-24 hr at 4 degrees C in 55.2 mM sodium phosphate buffer, pH 7.4, with a protease inhibitor cocktail. In order to obtain data suitable for quantitative curve fitting, it was necessary to repurify the [3H]mazindol by HPLC before a series of experiments. Under these conditions, we observed greater than 80% specific binding. The method of binding surface analysis was used to characterize the interaction of GBR12935, BTCP, mazindol, and CFT with binding site/sites labeled by [3H]mazindol. A one site model fit the data as well as the two site model: Bmax = 16911 fmol/mg protein, Kd of [3H]mazindol = 75 nM, Ki of GBR12935 = 8.1 nM, Ki of CFT = 50 nM and Ki of BTCP = 44 nM. The inhibitory mechanism (competitive or noncompetitive) of several drugs (GBR12935, CFT, BTCP, cocaine, cis-flupentixol, nomifensine, WIN35,065-2, bupropion, PCP, and benztropine) was determined. All drugs inhibited [3H]mazindol binding by a competitive mechanism. Although the ligand-selectivity of the [3H]mazindol binding site indicates that it is the uptake inhibitor recognition site of the classic DA transporter, the quantitative differences among the ligand-selectivities of different radioligands for the same site suggest that each radioligand labels different overlapping domains of the DA uptake inhibitor recognition site. It is likely that development of domain-selective drugs may further our understanding of the DA transporter.[Abstract] [Full Text] [Related] [New Search]