These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High level production of human growth hormone in the milk of transgenic mice: the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland.
    Author: Devinoy E, Thépot D, Stinnakre MG, Fontaine ML, Grabowski H, Puissant C, Pavirani A, Houdebine LM.
    Journal: Transgenic Res; 1994 Mar; 3(2):79-89. PubMed ID: 8193641.
    Abstract:
    The 5' flanking region (6.3 kb) of the rabbit WAP (rWAP) gene possesses important regulatory elements. This region was linked to the human growth hormone (hGH) structural gene in order to target transgene expression to the mammary gland. Thirteen lines of transgenic mice were produced. Milk could be collected from six lines of transgenic mice. In five of them, hGH was present in the milk at high concentrations ranging from 4 to 22 mg ml-1. hGH produced by the mammary gland comigrated with hGH of human origin. It was biologically active, and through its prolactin-like activity induced lactogenesis when introduced into mammary culture media. Two of these mouse lines were studied further. hGH mRNA was only detected in the mammary gland during lactation. In the seven other transgenic lines, hGH was present in the blood of cyclic females. The prolactin-like effect of hGH in these mice probably induced female sterility, and milk could therefore not be obtained. In two lines studied in more detail, the mammary gland was the main organ producing hGH, even in cyclic mice. Low ectopic expression was detected in other organs which varied from one line to the other. This was probably due to the influence on the transgene of the site of integration into the mouse genome. In the 13 lines studied, high mammary-specific hGH expression was not correlated to the transgene copy number. The rWAP-hGH construct thus did not behave as an independent unit of transcription. However, it can be concluded that the 6.3 kb flanking region of the rWAP gene contains regulatory elements responsible for the strong mammary-specific expression of hGH transgene, and that it is a good candidate to control high levels of foreign protein gene expression in the mammary gland of lactating transgenic animals.
    [Abstract] [Full Text] [Related] [New Search]