These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Study of tyrosine transfer ribonucleic acid modification in relation to sporulation in Bacillus subtilis.
    Author: Menichi B, Heyman T.
    Journal: J Bacteriol; 1976 Jul; 127(1):268-80. PubMed ID: 819420.
    Abstract:
    A reversal in the relative amounts of the two major species of tyrosine transfer ribonucleic acid (tRNATyr) (I and II) has been previously observed by others during the development of Bacillus subtilis. These species have been purified by benzoylated diethylaminoethyl-cellulose chromatography and were shown to differ by the modification of an adenosine residue (species I contains i6A and species II ms2i6A). As suggested by competitive hybridization assays, they might possess the same nucleotide sequence. A tRNATyr species lacking isopentenyl and methylthio moieties was not detected. The structural difference between species I and II was shown to be important for ribosome binding but not for charging. The extent of alteration during growth was studied in parallel with physiological events. Like sporulation, tRNATyr change is iron dependent. Moreover, when sporulation is prevented by an excess of glucose, the tRNATyr change is delayed as is the synthesis of enzymatic systems required for the onset of sporulation. tRNATyr change also demands unceasing protein synthesis.
    [Abstract] [Full Text] [Related] [New Search]