These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pullulanase of Thermoanaerobacterium thermosulfurigenes EM1 (Clostridium thermosulfurogenes): molecular analysis of the gene, composite structure of the enzyme, and a common model for its attachment to the cell surface.
    Author: Matuschek M, Burchhardt G, Sahm K, Bahl H.
    Journal: J Bacteriol; 1994 Jun; 176(11):3295-302. PubMed ID: 8195085.
    Abstract:
    The complete pullulanase gene (amyB) from Thermoanaerobacterium thermosulfurigenes EM1 was cloned in Escherichia coli, and the nucleotide sequence was determined. The reading frame of amyB consisted of 5,586 bp encoding an exceptionally large enzyme of 205,991 Da. Sequence analysis revealed a composite structure of the pullulanase consisting of catalytic and noncatalytic domains. The N-terminal half of the protein contained a leader peptide of 35 amino acid residues and the catalytic domain, which included the four consensus regions of amylases. Comparison of the consensus regions of several pullulanases suggested that enzymes like pullulanase type II from T. thermosulfurigenes EM1 which hydrolyze alpha-1,4- and alpha-1,6-glycosidic linkages have specific amino acid sequences in the consensus regions. These are different from those of pullulanases type I which only cleave alpha-1,6 linkages. The C-terminal half, which is not necessary for enzymatic function, consisted of at least two different segments. One segment of about 70 kDa contained two copies of a fibronectin type III-like domain and was followed by a linker region rich in glycine, serine, and threonine residues. At the C terminus, we found three repeats of about 50 amino acids which are also present at the N-termini of surface layer (S-layer) proteins of, e.g., Thermus thermophilus and Acetogenium kivui. Since the pullulanase of T. thermosulfurigenes EM1 is known to be cell bound, our results suggest that this segment serves as an S-layer anchor to keep the pullulanase attached to the cell surface. Thus, a general model for the attachment of extracellular enzymes to the cell surface is proposed which assigns the S-layer a new function and might be widespread among bacteria with S-layers. The triplicated S-layer-like segment is present in several enzymes of different bacteria. Upstream of amyB, another open reading frame, coding for a hypothetical protein of 35.6 kDa, was identified. No significant similarity to other sequences available in DNA and protein data bases was found.
    [Abstract] [Full Text] [Related] [New Search]