These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of high osmolality on Na+/H+ exchange in renal proximal tubule cells.
    Author: Soleimani M, Bookstein C, McAteer JA, Hattabaugh YJ, Bizal GL, Musch MW, Villereal M, Rao MC, Howard RL, Chang EB.
    Journal: J Biol Chem; 1994 Jun 03; 269(22):15613-8. PubMed ID: 8195209.
    Abstract:
    Na+/H+ exchanger isoform and the effect of high osmolality on its function was studied in cultured renal epithelial cells (LLC-PK1 and OK). Using NHE-3-specific antibody, immunoblots of luminal membranes from LLC-PK1 and OK cells specifically labeled proteins with molecular masses 90 and 95 kDa, indicating that NHE-3 is the isoform expressed on the luminal membranes of these epithelia. Proximal tubular suspensions from rabbit kidney cortex were incubated in control (310 mosm/liter) or high osmolality (510 mosm/liter) medium for 45 min and utilized for brush border membrane vesicle preparation. Influx of amiloride-sensitive 22Na+ at 10 s (pHo 7.5, pHi 6.0) into brush border membrane vesicles was 37% lower in the high osmolality group (p < 0.03). LLC-PK1 or OK cells were grown to confluence and examined for Na+/H+ exchange activity. An increase in medium osmolality to 510 mosm following acid loading decreased the 5-min uptake of the amiloride-sensitive 22Na+ in LLC-PK1 and OK cells (p < 0.04 and < 0.03 for LLC-PK1 cell OK cells, respectively). An increase in medium osmolality to 510 mosm in vascular smooth muscle cells, which express NHE-1, produced 45 and 64% stimulation of the amiloride-sensitive 22Na+ influx at base-line pHi and acid-loaded condition, respectively (p < 0.03 and < 0.01). Down-regulation of protein kinase C by preincubation with phorbol 12-myristate 13-acetate or inhibition of Ca(2+)-calmodulin-dependent protein kinase (calmodulin-kinase II) by N-6-aminohexyl-5-chloro-1-naphthalenesulfonamide (W-7) in LLC-PK1 cells did not block the inhibitory effect of high osmolality on Na+/H+ exchange activity. We conclude that renal proximal tubule epithelial cells express Na+/H+ exchange isoform NHE-3 on their luminal membranes and that hyperosmolality decreases transporter activity during cell acidification. This inhibitory effect might be unique to the NHE-3 isoform, since vascular smooth muscle cells which express NHE-1 exhibit an increase in Na+/H+ exchange activity in response to high osmolality.
    [Abstract] [Full Text] [Related] [New Search]