These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The cooperative effects of TNF-alpha and IFN-gamma are determining factors in the ability of IL-10 to protect mice from lethal endotoxemia.
    Author: Smith SR, Terminelli C, Kenworthy-Bott L, Calzetta A, Donkin J.
    Journal: J Leukoc Biol; 1994 Jun; 55(6):711-8. PubMed ID: 8195696.
    Abstract:
    Recent studies have demonstrated that interleukin-10 (IL-10) has the capacity to protect mice from the lethal effects of endotoxin. In this investigation, we have examined the ability of IL-10 to protect both normal mice and Corynebacterium parvum-primed mice against endotoxin lethality. In the overwhelming majority of experiments, recombinant murine IL-10 (rMuIL-10) and recombinant human IL-10 (rHuIL-10) did not protect normal BALB/cJ mice from lipopolysaccharide (LPS)-induced lethality at doses up to 10 micrograms/mouse. Despite their inability to protect, both IL-10 preparations were highly effective in preventing the increase in serum tumor necrosis factor alpha (TNF-alpha) that occurred in response to the lethal dose of LPS. Moreover, a neutralizing antibody against TNF-alpha gave only partial protection when administered alone to BALB/cJ mice. Treatment with a combination of neutralizing antibodies against TNF-alpha and interferon-gamma (IFN-gamma) resulted in complete protection. In contrast to BALB/cJ mice, normal BDF1 mice were protected from lethal endotoxemia by treatment with both rMuIL-10 and rHuIL-10. However, IL-10 did not protect C. parvum-primed BDF1 against LPS lethality even though it caused a reduction in the LPS-induced serum TNF-alpha response in C. parvum-primed mice as well as in normal BDF1 mice. Neutralizing antibodies against TNF-alpha and IFN-gamma were protective when administered alone to normal BDF1 mice, as previously demonstrated in C. parvum-primed mice. These findings suggest that lethal endotoxemia is a result of the cooperative activities of TNF-alpha and IFN-gamma in normal mice of the BALB/cJ and BDF1 strains as well as in C. parvum-primed BDF1 mice. IL-10 appears to be less effective in protecting mice from lethal endotoxemia when cooperation between IFN-gamma and TNF-alpha is facilitated by high-level production of the cytokines as in C. parvum-primed mice or when there is evidence of strong synergy between them as in normal BALB/cJ mice.
    [Abstract] [Full Text] [Related] [New Search]