These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of microsomal lipid peroxidation and monooxygenase activities by eugenol.
    Author: Nagababu E, Lakshmaiah N.
    Journal: Free Radic Res; 1994 Apr; 20(4):253-66. PubMed ID: 8205227.
    Abstract:
    Previously we reported that eugenol (4-allyl-2-methoxyphenol) inhibits non-enzymatic peroxidation in liver mitochondria (E. Nagababu and N. Lakshmaiah, 1992, Biochemical Pharmacology. 43, 2393-2400). In the present study, we examined the effect of eugenol on microsomal mixed function oxidase mediated peroxidation using Fe+3-ADP-NADPH, carbon tetrachloride (CCL4)-NADPH and cumene hydroperoxide (CumOOH) systems. In the presence of eugenol the formation of thiobarbituric acid reactive substances (TBARS) was decreased in all the systems (IC50 values: 14 microM for Fe+3-ADP-NADPH, 4.0 microM for CCl4-NADPH and 15 microM for CumOOH). Oxygen uptake was also inhibited to a similar extent with Fe+3-ADP-NADPH and CumOOH systems. A comparative evaluation with other antioxidants showed that in Fe+3-ADP-NADPH and CumOOH systems, the antioxidant efficacy was in the order: butylated hydroxytoluene (BHT) > eugenol > alpha-tocopherol, while in CCl4-NADPH system the order was alpha-tocopherol > BHT > eugenol. Time course of inhibition by eugenol indicated interference in initiation as well as propagation of peroxidation. Eugenol did not inhibit cytochrome P-450 reductase activity but it inhibited P-450 - linked monooxygenase activities such as aminopyrine-N-demethylase, N-nitrosodimethylamine demethylase, benzo(a)pyrene hydroxylase and ethoxyresorufin-O-deethylase to different extents. However, CumOOH supported monooxygenases (aminopyrine-N-demethylase and benzo(a)pyrene hydroxylase) required much higher concentrations of eugenol for inhibition. The concentration of eugenol required to inhibit monooxygenase activities was more than that required to inhibit peroxidation in all the systems. Eugenol elicited type 1 changes in the spectrum of microsomal cytochrome P-450. These results suggest that the inhibitory effect of eugenol on lipid peroxidation is predominantly due to its free radical quenching ability. Eugenol significantly protected against the degradation of cytochrome P-450 during lipid peroxidation with all the systems tested. These findings suggest that eugenol has the potential to be used as a therapeutic antioxidant. Further evaluation may throw more light on this aspect.
    [Abstract] [Full Text] [Related] [New Search]