These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exogenous free iodotyrosine inhibits iodide transport through the sequential intracellular events. Author: Nasu M, Sugawara M. Journal: Eur J Endocrinol; 1994 Jun; 130(6):601-7. PubMed ID: 8205262. Abstract: We describe a new function of exogenous iodotyrosine as a regulator of iodide transport. Porcine thyroid follicles in culture were preincubated with 0-20 mumol/l monoiodotyrosine or diiodotyrosine (DIT) in the presence of bovine thyrotropin (TSH) for 24 h; these iodotyrosines inhibited iodide uptake in a dose-response manner. Extracellular [125I]DIT was actively transported to the thyroid follicle in the presence of TSH or (Bu)2cAMP. Inhibition of iodide uptake by iodotyrosine required preincubation with iodotyrosine in the presence of TSH; without TSH, iodotyrosine was ineffective. Follicles preincubated with DIT for 24 h inhibited TSH-mediated cAMP production, which is an important signal for iodide transport. Inhibition of iodide uptake and cAMP generation by iodotyrosine was negated characteristically by 3-nitro-L-tyrosine, an inhibitor of iodotyrosine deiodinase, or by methimazole, an inhibitor of thyroid peroxidase. Our findings suggest that iodotyrosine regulates iodide transport through the following sequential intracellular events: TSH-dependent iodotyrosine transport into the thyroid cell; deiodination of iodotyrosine and release in iodide; iodine organification by the peroxidase system; inhibition of cAMP generation by organified iodine; and inhibition of iodide transport. Thus, exogenous iodotyrosine can serve as an inhibitor of thyroid hormone formation only when TSH is present.[Abstract] [Full Text] [Related] [New Search]