These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The rate-limiting step in microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains occurs while bound to the microtubule.
    Author: Hackney DD.
    Journal: J Biol Chem; 1994 Jun 10; 269(23):16508-11. PubMed ID: 8206961.
    Abstract:
    DKH392 is a construct which contains the first 392 amino acids of the alpha-subunit of Drosophila kinesin and is dimeric in solution (Huang, T.-G., Suhan, J., and Hackney, D. D. (1994) J. Biol. Chem. 269, 16502-16507). The ATPase rate of DKH392 was 0.005 s-1 in the absence of MTs. One ADP bound tightly to each subunit and the release of this ADP was the rate-limiting step in ATP hydrolysis. Microtubules accelerated the rate of ADP release and increased the rate of steady state ATP hydrolysis by almost 10,000-fold (kcat = approximately 45 s-1). The KMT0.5,ATPase value for saturation of the stimulation of the ATPase reaction by microtubules was 50 nM at 8 nM DKH392, but decreased at lower concentrations of DKH392. Physical binding of DKH392 to microtubules in the presence of 1 mM MgATP paralleled saturation of the stimulation of the ATPase activity by microtubules indicating that the rate-limiting step in microtubule-stimulated ATP hydrolysis occurs while DKH392 is bound to the microtubule. These results suggest that microtubule-stimulated ATP hydrolysis by DKH392 may be processive with the hydrolysis of multiple ATP molecules during each diffusional encounter of DKH392 with a microtubule.
    [Abstract] [Full Text] [Related] [New Search]