These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Low levels of ATP synthase and cytochrome c oxidase subunit peptide from hearts of copper-deficient rats are not altered by the administration of dimethyl sulfoxide.
    Author: Chao JC, Medeiros DM, Davidson J, Shiry L.
    Journal: J Nutr; 1994 Jun; 124(6):789-803. PubMed ID: 8207536.
    Abstract:
    This study determined if reported decreases in the delta subunit of ATP synthase and nuclear-encoded cytochrome c oxidase subunits in hearts of copper-deficient rats were secondary to the heart disease pathology or due to lack of the trace element. Male weanling Long-Evans rats were randomly divided into six groups: rats fed a copper-adequate or copper-deficient diet (with free access) with or without 5% dimethyl sulfoxide (DMSO) in the drinking water and rats pair-fed the copper-adequate or copper-deficient diet without DMSO treatment. After 4 wk, rats in the groups fed the copper-deficient diet had lower liver superoxide dismutase and heart cytochrome c oxidase activities compared with groups fed the copper-adequate diet. Administration of DMSO, an antioxidant, and energy restriction (pair-feeding) partially blocked cardiac hypertrophy in rats fed the copper-deficient diet. Greater mitochondrial volume density and mitochondrial:myofibrillar ratio and disrupted myofibrils and basal laminae were observed in the hearts from rats fed the copper-deficient diet and not treated with DMSO compared with hearts from groups fed the copper-adequate diet. The DMSO-treated rats fed the copper-deficient diet had hearts with intact structure but enlarged mitochondria compared with other groups fed the copper-deficient diet. The delta subunit of ATP synthase and the nuclear-encoded cytochrome c oxidase subunits IV and V were depressed in rats fed a copper-deficient diet regardless of antioxidant treatment and pair-feeding. These data suggest that the effects of copper deficiency upon ATP synthase and cytochrome c oxidase proteins are not due to the cardiac pathology.
    [Abstract] [Full Text] [Related] [New Search]