These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mutagenesis of bacteriophage IKe major coat protein transmembrane domain: role of an interfacial proline residue. Author: Williams KA, Deber CM. Journal: Biochem Biophys Res Commun; 1993 Oct 15; 196(1):1-6. PubMed ID: 8216279. Abstract: The transmembrane (TM) domain of the 53-residue major coat protein of the M13-related bacteriophage IKe (residues 24-42: LISQTWPVVTTVVVAGVLI) has been subjected to randomized mutagenesis to probe the conformation and stability of the TM domain, as well as the effect of structurally-important residues such as proline. TM mutants were obtained by the Eckstein method of site-directed mutagenesis using the IKe genome as template so as to eliminate the need for subcloning. Over 40 single- and double-site viable mutants of bacteriophage IKe were isolated. Every residue in the TM segment, except the highly conserved Trp29, could be mutated to at least one other residue; polar and charged mutations occurred in the TM segment adjacent to the N-terminal domain (residues 24-28), while non-polar substitutions predominated in the C-terminal portion (residues 30-42). The Pro30 locus tolerated four mutations-Ala, Gly, Cys, and Ser- which represent the four side chains of least volume. Mutant coat proteins obtained directly from the phage in milligram quantities were studied by circular dichroism spectroscopy and SDS-PAGE gels. Wild type IKe coat protein solubilized in sodium deoxycholate micelles was found to occur as an alpha-helical, monomeric species which is stable at 95 degrees C, whereas the mutant Pro30-->Gly undergoes an irreversible conformational transition at ca. 90 degrees C to an aggregated beta-sheet structure. The result that Pro30 stabilizes the TM helix in the micellar membrane suggests a sterically-restricted location for the wild type Pro pyrrolidine side chain in the bulky Trp-Pro-Val triad, where it may be positioned to direct the initiation of the subsequent TM core domain helix.[Abstract] [Full Text] [Related] [New Search]