These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Endogenous amino acid transport systems and expression of mammalian amino acid transport proteins in Xenopus oocytes. Author: Van Winkle LJ. Journal: Biochim Biophys Acta; 1993 Oct 29; 1154(2):157-72. PubMed ID: 8218336. Abstract: Oocyte amino acid transport has physiological significance to oocytes and practical importance to molecular biologists and transport physiologists. Expression of heterologous mRNA in Xenopus oocytes is currently being used to help clone cDNAs for amino acid transporters and their effectors. A major question to be resolved in many of these studies is whether the injected mRNA codes for a transporter or an activator of an endogenous system. Nevertheless, the cDNAs of several families of amino acid transporters or their activators appear already to have been cloned. One such transporter is the anion exchanger, band 3, which may also transport glycine and taurine under some important physiological conditions such as hypoosmotic stress. Site-directed mutagenesis of band 3 has already shown that an amino acid residue believed to be at or near the active site nevertheless does not appear to influence Cl- transport in Xenopus oocytes expressing the modified band 3 protein. Continuation of such studies along with examination of transport of all possible substrates of band 3 should yield insight into the relationship between the structure and function of this transporter. Each of three other families not only contains amino acid transporters, but also appears to contain members that serve as transporters of neurotransmitters or their metabolites. Because of the distinct structural differences in the preferred substrates of different transporters within some of these families, elucidation of the tertiary and possibly quaternary structural relationships among the members of such families may reveal transport mechanisms. In addition, the grouping of neurotransmitters or their metabolites according to the family to which their transport systems and transporters belong could yield insight into mechanisms of brain development, function and evolution. Another family of transporters for cationic amino acids also serves, at least in one case, as a viral receptor. Hence, these or other transporters also could conceivably function in eggs as receptors for sperm and, more broadly, in cell-cell interactions as well as in amino acid transport. Moreover, a family of apparent amino acid transport activators are homologous to a family of glycosidases, so these activators could also serve to recognize carbohydrate structures on other cells or the extracellular matrix. Some of these activators appear to increase more than one amino acid transport activity in Xenopus oocytes. In other studies, expression of heterologous mRNA in oocytes has led apparently to detection of inhibitors as well as activators of amino acid transport. Some amino acid transport systems also could conceivably contain nucleic acid as well as glycoprotein components.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]