These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of estrogen in relation to dietary vitamin D3 and calcium on activity of intestinal alkaline phosphatase and Ca-ATPase in immature chicks.
    Author: Qin X, Klandorf H.
    Journal: Gen Comp Endocrinol; 1993 Jun; 90(3):318-27. PubMed ID: 8224758.
    Abstract:
    The interaction between 17 beta-estradiol (E2), vitamin D3 (D3), and dietary Ca on the activities of Ca-ATPase and alkaline phosphatase (AP) was determined in the intestine of young female chicks. Chicks (n = 36) were assigned to two groups, one of which was transferred to a low Ca (0.2%) diet and the other maintained on a regular diet. One week later, each group was further divided into three subgroups and given daily injections of 0(oil), 0.25, or 0.5 mg E2/kg body wt for 14 days. E2 treatment as well as low dietary Ca significantly increased AP activity (P < 0.05), whereas the highest E2 dose decreased jejunal Ca-ATPase (P < 0.05). In a separate study, day-old chicks (n = 40) fed a purified diet supplemented with or without D3 for 24 days were divided into two subgroups and administered daily injections of either 0 or 0.25 mg estrogen 3-benzoate/kg body wt for 5 days. E2 alone or in combination with D3 failed to change Ca-ATPase activity in either the duodenum or the jejunum. However, E2 enhanced the D3-stimulated AP activity measured in the supernatant of duodenum (D3, P < 0.001; E2, P > 0.05; E2 x D3, P < 0.05) and jejunum (D3, P < 0.001; E2, P > 0.05; E2 x D3, P = 0.06). Daily injections of 0.5 mg E2/kg body wt for 6 days to 6-week-old D3-adequate chicks (n = 16) significantly increased AP activity in jejunum but not in liver and kidney (P < 0.05). In conclusion, E2 treatment enhanced the activity of intestinal AP but not Ca-ATPase. This enhancement was independent of dietary Ca, but was D3-dependent and tissue specific. The results suggest that the pubertal increase in plasma E2 can affect Ca absorption from the intestine by increasing the activity of AP.
    [Abstract] [Full Text] [Related] [New Search]