These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression, purification, and characterization of SH2-containing protein tyrosine phosphatase, SH-PTP2.
    Author: Sugimoto S, Lechleider RJ, Shoelson SE, Neel BG, Walsh CT.
    Journal: J Biol Chem; 1993 Oct 25; 268(30):22771-6. PubMed ID: 8226787.
    Abstract:
    A human protein tyrosine phosphatase containing two src homology 2 (SH2) domains (SH-PTP2) was expressed in Escherichia coli under T7 promoter control and purified to near homogeneity. The purified protein, with molecular mass of 68 kDa on SDS-polyacrylamide gel electrophoresis, was identified as SH-PTP2 by its protein tyrosine phosphatase activity and N-terminal amino acid sequence analysis. Its protein tyrosine phosphatase activity was sensitive to pH and salt concentration. Whereas its optimum pH for the low molecular weight substrate para-nitrophenyl phosphate is 5.6, the pH optima for peptide substrates were shifted toward neutral. With the artificial protein substrate reduced, carboxyamidomethylated, and maleylated lysozyme, it displays 2000-fold lower Km (1.7 microM) and 2.4-fold higher kcat (0.11 s-1) than with para-nitrophenyl phosphate. Among the phosphopeptides from autophosphorylation sites of receptors for epidermal growth factor and platelet-derived growth factor, SH-PTP2 displayed high activity toward phosphopeptides corresponding to pY992 of the epidermal growth factor receptor and pY1009 and pY1021 of the platelet-derived growth factor receptor. In further enzymatic studies with phosphopeptides corresponding to pY1009, SH-PTP2 showed nonlinear Line-weaver-Burk double-reciprocal plots, suggesting that the phosphopeptide corresponding to pY1009 may have a substrate and allosteric effect.
    [Abstract] [Full Text] [Related] [New Search]