These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expiratory neurons of the Bötzinger Complex in the rat: a morphological study following intracellular labeling with biocytin. Author: Bryant TH, Yoshida S, de Castro D, Lipski J. Journal: J Comp Neurol; 1993 Sep 08; 335(2):267-82. PubMed ID: 8227518. Abstract: The term "Bötzinger Complex" (BOT) refers to a distinct group of neurons, located near the rostral portion of the nucleus ambiguus, which are known to play an important role in the control of respiratory movements. Previous studies conducted in cats have demonstrated that most of these neurons are active during expiration, exerting a monosynaptic inhibitory action on several subpopulations of inspiratory neurons in the medulla and spinal cord. The aim of this study was to examine morphological properties and possible synaptic targets of BOT neurons in the rat. Forty-one expiratory neurons were labeled intracellularly with biocytin; 12 were interneurons (BOT neurons) and 29 were motoneurons. The latter could not be antidromically activated following stimulation of the superior laryngeal or vagal nerves. BOT neurons showed extensive axonal arborisations in the ipsilateral medulla, with some projections to the contralateral side. Bouton-like axon varicosities mainly clustered in two areas: near the parent cell bodies, and in the area corresponding to the rostral part of the ventral respiratory group (VRG). In five pairs of labeled neurons, each consisting of one BOT neuron and one inspiratory neuron in the rostral VRG, no appositions were identified at the light microscopic level between axons of BOT neurons and dendrites or cell bodies of inspiratory neurons. These results demonstrate that some features of BOT expiratory neurons in the rat are similar to those previously described in cats. The differences include their more ventral location in relation to the compact formation of nucleus ambiguus (retrofacial nucleus), and the relative paucity in the rat of neurons displaying an augmenting pattern of activity and of neurons with spinally projecting axons. In addition, we were unable to find morphological evidence for contacts between labeled BOT neurons and ipsilateral inspiratory neurons near the obex level, a finding not consistent with previous electrophysiological studies in the cat in which such synaptic connections have been identified.[Abstract] [Full Text] [Related] [New Search]