These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inositol-1,3,4,5-tetrakisphosphate induces calcium mobilization via the inositol-1,4,5-trisphosphate receptor in SH-SY5Y neuroblastoma cells.
    Author: Wilcox RA, Challiss RA, Liu C, Potter BV, Nahorski SR.
    Journal: Mol Pharmacol; 1993 Oct; 44(4):810-7. PubMed ID: 8232232.
    Abstract:
    myo-Inositol-1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]-induced Ca2+ mobilization was examined in saponin-permeabilized SH-SY5Y cells using myo-inositol hexakisphosphate-supplemented buffer to prevent Ins(1,3,4,5)P4-3-phosphatase-catalyzed back-conversion of exogenous Ins(1,3,4,5)P4 to myo-inositol-1,4,5-trisphosphate [Ins(1,4,5)P3]. The Ins(1,3,4,5)P4 concentration-response curve for Ca2+ release in SH-SY5Y cells exhibited an EC50 of 2.5 microM, compared with 52 nM for Ins(1,4,5)P3, with the maximally effective concentration of Ins(1,3,4,5)P4 (100 microM) mobilizing the entire Ins(1,4,5)P3-sensitive pool. Both Ins(1,3,4,5)P4- and Ins(1,4,5)P3-induced Ca2+ mobilizations were heparin sensitive. Further, L-chiro-inositol-2,3,5-trisphosphorothioate, a recently identified low intrinsic activity Ins(1,4,5)P3 receptor partial agonist, shifted both the Ins(1,4,5)P3 and Ins(1,3,4,5)P4 concentration-response curves significantly rightward, with similar potencies. However, binding studies demonstrate that L-chiro-inositol-2,3,5-trisphosphorothioate interacts very poorly (IC50 > 30 microM) with specific Ins(1,3,4,5)P4 binding sites that have been previously characterized in pig cerebellum. Carbachol-pretreated SH-SY5Y cells (1 mM, > or 6 hr) exhibit a decrease in Ins(1,4,5)P3 receptor number, accompanied by both a rightward shift and a reduced maximal Ca2+ release in their Ins(1,4,5)P3 concentration-response curve. Here both Ins(1,4,5)P3 and Ins(1,3,4,5)P4 concentration-response curves were found to exhibit identically reduced maximal Ca2+ release responses and about 4-fold rightward shifts in EC50 values. Together, these observations provide compelling evidence for our hypothesis that Ins(1,3,4,5)P4 exhibits weak but full agonist status at Ins(1,4,5)P3 receptor-operated Ca2+ channels in SH-SY5Y cells.
    [Abstract] [Full Text] [Related] [New Search]