These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Okadaic acid, a protein phosphatase inhibitor, enhances transcription of a receptor gene containing sequence A of the human prolactin promoter.
    Author: Wera S, Belayew A, Martial JA.
    Journal: Mol Endocrinol; 1993 Aug; 7(8):965-71. PubMed ID: 8232316.
    Abstract:
    Human PRL (hPRL) gene expression is controlled by cAMP and Ca2+. This control is mediated by two cis-elements: a Pit-1 binding site (-62 to -35) and sequence A (-110 to -85), present in the hPRL promoter. We have investigated whether protein phosphatases could be involved in this regulation. GC-type rat pituitary tumor cells were transfected with sequence -138 to -35 of the hPRL gene promoter, upstream from a thymidine kinase promoter and a chloramphenicol acetyltransferase (CAT) reporter gene. Addition of okadaic acid (OA), a specific inhibitor of protein phosphatases 1 and 2A, stimulates transient expression of the CAT gene. The dose-response curve shows a maximal effect at 25 nM OA (2.2-fold stimulation above controls). The OA effect is also observed with a natural 4500-base pair hPRL promoter. A single copy of the hPRL promoter sequence -115 to -85 (sequence A) confers to a thymidine kinase-CAT construct an identical response to OA, whereas a single copy of the proximal Pit-1 binding site does not. Synergism is observed between cAMP and OA in activating PRL gene transcription. This synergism is also observed with a single copy of sequence A. The effect of cAMP is not mediated by an L-type Ca2+ channel, since addition of the Ca2+ channel antagonist verapamil does not decrease it, nor does complexing extracellular Ca2+ significantly reduce it. Furthermore, OA and the Ca2+ channel opener BAY K8644 exert additive effects.
    [Abstract] [Full Text] [Related] [New Search]