These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intracellular Ca2+ and PKC activation do not inhibit Na+ and water transport in rat CCD.
    Author: Rouch AJ, Chen L, Kudo LH, Bell PD, Fowler BC, Corbitt BD, Schafer JA.
    Journal: Am J Physiol; 1993 Oct; 265(4 Pt 2):F569-77. PubMed ID: 8238386.
    Abstract:
    Experiments examined the effects of elevation of intracellular calcium concentration ([Ca2+]i) or activation of protein kinase C (PKC) on Na+ and water transport in the rat cortical collecting duct (CCD). We measured the lumen-to-bath 22Na+ flux (J1-->b), transepithelial voltage (VT), and water permeability (Pf) in CCD from deoxycorticosterone (DOC)-treated rats. Ionomycin (0.5 and 1 microM) and thapsigargin (1 and 2 microM) were used to increase [Ca2+]i. Phorbol 12-myristate 13-acetate (PMA; 0.3 and 1 microM) and oleoyl-acetyl-glycerol (OAG; 100 microM) were used as activators of PKC. [Ca2+]i was measured in isolated perfused tubules using the fluorescent dye fura 2. When added to the bathing solution, 220 pM arginine vasopressin (AVP) failed to affect [Ca2+]i, whereas 1 microM ionomycin increased [Ca2+]i by 103 +/- 15% and 2 microM thapsigargin increased [Ca2+]i by 24 +/- 4%. In flux studies, neither ionomycin nor thapsigargin affected J1-->b or Pf, although ionomycin caused marked morphological changes. Ionomycin also failed to alter either parameter in tubules from non-DOC-treated rats. Neither 100 microM OAG nor 1 microM PMA affected J1-->b or Pf. OAG at 50 microM had no effect on VT or transepithelial resistance, indicating no inhibition of conductive Na+ transport. We conclude that increased [Ca2+]i and PKC activation do not affect J1--b or Pf in the rat CCD. These findings may account for the sustained increase in J1--b produced in the rat CCD by AVP.
    [Abstract] [Full Text] [Related] [New Search]