These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition by a stable factor derived from neutrophils of endothelium-dependent relaxation in rat aorta.
    Author: Liu JJ, Chen JR, Wiley J, Johnston CC, Buxton BF.
    Journal: Am J Physiol; 1993 Oct; 265(4 Pt 2):H1454-9. PubMed ID: 8238434.
    Abstract:
    Polymorphonuclear leukocytes (PMNs) may play an important role in many pathophysiological states. The effect of a factor derived from PMNs on endothelium-dependent relaxation was studied using rat aortic rings in organ chambers. PMNs were obtained from cardiac surgical patients and healthy volunteers. After incubation in Krebs solution for 3 h, supernatants of PMN suspensions were isolated and used to pretreat the aortic rings for 30 min. The results showed that the supernatants derived from 1 x 10(4) to 5 x 10(6) cells/ml PMNs produced a concentration-dependent inhibition of endothelium-dependent relaxation to acetylcholine but not endothelium-independent relaxation to sodium nitroprusside. The effect could not be prevented by oxygen free radical scavenger superoxide dismutase (150 U/ml), catalase (1,200 U/ml), or mannitol (20 mM) used alone or in combination. Heating the supernatants at 95 degrees C for 30 min did not reduce the inhibitory effect. L-Arginine at 3 x 10(-5) to 3 x 10(-3) M did not significantly reverse the inhibitory effect of the PMN-derived factor. In conclusion, this study reveals that a heat-stable factor derived from human PMNs potently inhibits acetylcholine-induced endothelium-dependent relaxation but not sodium nitroprusside-induced endothelium-independent relaxation in rat aorta. This inhibitory effect is not caused by oxygen free radicals, a limitation of nitric oxide precursor or other unstable factors.
    [Abstract] [Full Text] [Related] [New Search]