These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of cloned voltage-gated K+ channel expression on alanine transport, Rb+ uptake, and cell volume. Author: Felipe A, Snyders DJ, Deal KK, Tamkun MM. Journal: Am J Physiol; 1993 Nov; 265(5 Pt 1):C1230-8. PubMed ID: 8238476. Abstract: Voltage-gated K+ channels are involved in regulation of action potential duration and in setting the resting membrane potential in nerve and muscle. To determine the effects of voltage-gated K+ channel expression on processes not associated with electrically excitable cells, we studied cell volume, membrane potential, Na(+)-K(+)-ATPase activity, and alanine transport after the stable expression of the Kv1.4 and Kv1.5 human K+ channels in Ltk- mouse fibroblasts (L-cells). The fast-activating noninactivating Kv1.5 channel, but not the rapidly inactivating Kv1.4 channel, prevented dexamethasone-induced increases in intracellular volume and inhibited Na(+)-K(+)-ATPase activity by 25%, as measured by 86Rb+ uptake. Alanine transport, measured separately by systems A and ASC, was lower in Kv1.5-expressing cells, indicating that the expression of this channel modified the Na(+)-dependent amino acid transport of both systems. Expression of the Kv1.4 channel did not alter alanine transport relative to wild-type or sham-transfected cells. The changes specific to Kv1.5 expression may be related to the resting membrane potential induced by this channel (-30 mV) in contrast to that measured in wild-type sham-transfected, or Kv1.4-transfected cells (-2 to 0 mV). Blocking of the Kv1.5 channel by 60 microM quinidine negated the effects of Kv1.5 expression on intracellular volume, Na(+)-K(+)-ATPase, and Na(+)-dependent alanine transport. These results indicate that delayed rectifier channels such as Kv1.5 can play a key role in the control of cell membrane potential, cell volume, Na(+)-K(+)-ATPase activity, and electrogenic alanine transport across the plasma membrane of electrically unexcitable cells.[Abstract] [Full Text] [Related] [New Search]