These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Vectorial Ca2+ flux from the extracellular space to the endoplasmic reticulum via a restricted cytoplasmic compartment regulates inositol 1,4,5-trisphosphate-stimulated Ca2+ release from internal stores in vascular endothelial cells.
    Author: Cabello OA, Schilling WP.
    Journal: Biochem J; 1993 Oct 15; 295 ( Pt 2)(Pt 2):357-66. PubMed ID: 8240234.
    Abstract:
    Depletion of the Ins(1,4,5)P3-sensitive intracellular Ca2+ store of vascular endothelial cells after selective inhibition of the endoplasmic-reticulum (ER) Ca2+ pump by thapsigargin or 2,5-di-t-butylhydroquinone (BHQ) increases Ca2+ influx from the extracellular space in the absence of phosphoinositide hydrolysis. One model to account for these results suggests a close association between the internal store and the plasmalemma, allowing for the vectorial movement of Ca2+ from the extracellular space to the ER. Furthermore, recent evidence suggests that Ins(1,4,5)P3-induced Ca2+ release from intracellular stores is regulated by the free cytosolic Ca2+ concentration ([Ca2+]i). Thus agonist-induced Ca2+ entry may directly regulate Ca2+ release from internal stores. To test these hypotheses, we examined the effect of 1-(beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl)-1H-imidazole (SKF 96365), an inhibitor of Ca2+ influx, on unidirectional 45Ca2+ efflux (i.e. retrograde radioisotope flux via the influx pathway) and on [Ca2+]i as measured by fura-2. Bradykinin produced a transient increase in [Ca2+]i, reflecting release of Ca2+ from internal stores, and a sustained increase indicative of Ca2+ influx. In the absence of agonist, 45Ca2+ efflux was slow and monoexponential with time. Addition of BK dramatically increased 45Ca2+ efflux; 50-60% of the 45Ca2+ associated with the cell monolayer was released within 2 min after addition of bradykinin. Both the bradykinin-induced change in [Ca2+]i and the stimulation of 45Ca2+ efflux was completely blocked by loading the cells with the Ca2+ chelator BAPTA. At a supermaximal concentration of bradykinin (50 nM), SKF 96365 (50 microM) inhibited the rise in [Ca2+]i attributed to influx without affecting release from internal stores. At a threshold concentration of bradykinin (2 nM), SKF 96365 blocked influx, but stimulated Ca2+ release from internal stores, as indicated by increases in both the transient component of the fura-2 response and 45Ca2+ efflux. Thapsigargin (200 nM) and BHQ (10 microM) produced an increase in 45Ca2+ efflux that was completely blocked by SKF 96365 or by cytosolic loading with BAPTA. These results suggest the existence of a restricted sub-plasmalemmal space that is defined by an area of surface membrane which contains the Ca(2+)-influx pathway but is devoid of Ca2+ pumps, and by a section of ER that is rich in thapsigargin-sensitive Ca(2+)-pump units.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]