These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of thyrotropin releasing hormone on U-50,488H-induced pharmacological responses in mice. Author: Bhargava HN, Thorat SN. Journal: Brain Res; 1993 Oct 15; 625(1):120-4. PubMed ID: 8242390. Abstract: The effect of thyrotropin releasing hormone (TRH) administered either subcutaneously (s.c.) or intracerebroventricularly (i.c.v.) on the analgesic and hypothermic actions of U-50,488H, a highly selective kappa-opiate agonist, was determined in male Swiss Webster mice. Intraperitoneal administration of U-50,488H (8-32 mg/kg) produced a dose-dependent analgesia as assessed by the tail-flick test. Similarly, U-50,488H also produced a dose-dependent hypothermia in mice. TRH was administered s.c. 15 min or i.c.v. 5 min prior to U-50,488H injection. TRH (1,3 and 10 mg/kg, s.c.) dose-dependently attenuated the analgesic effect of U-50,488H (32 mg/kg), whereas TRH at these doses displayed almost complete blockade of the hypothermic effect of U-50,488H. Similarly, TRH (0.03, 0.3 and 1 microgram/mouse; i.c.v.) dose-dependently attenuated the analgesic and hypothermic actions of U-50,488H, indicating the central component in the action of TRH. TRH alone in doses used showed no change in either basal tail-flick latency or body temperature, demonstrating the lack of effect of this drug alone on pain and temperature responsiveness. Studies have shown that TRH does not modify morphine or beta-endorphin-induced analgesia in animals nor does it affect the binding of mu-opiate agonist or antagonist to brain membranes. Previous studies from this laboratory have indicated that kappa-opiates but not mu-opiates inhibit the binding of [3H][3-MeHis2]-TRH to brain membranes. The present studies clearly show that TRH modulates the pharmacological actions mediated by kappa-opiate agonists in mice. Thus, these studies provide further in vivo evidence for an acute interaction between TRH and kappa-opiates.[Abstract] [Full Text] [Related] [New Search]