These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kynurenine pathway enzymes in brain: responses to ischemic brain injury versus systemic immune activation. Author: Saito K, Nowak TS, Suyama K, Quearry BJ, Saito M, Crowley JS, Markey SP, Heyes MP. Journal: J Neurochem; 1993 Dec; 61(6):2061-70. PubMed ID: 8245962. Abstract: Accumulation of L-kynurenine and quinolinic acid (QUIN) in the brain occurs after either ischemic brain injury or after systemic administration of pokeweed mitogen. Although conversion of L-[13C6]tryptophan to [13C6]-QUIN has not been demonstrated in brain either from normal gerbils or from gerbils given pokeweed mitogen, direct conversion in brain tissue does occur 4 days after transient cerebral ischemia. Increased activities of enzymes distal to indoleamine-2,3-dioxygenase may determine whether L-kynurenine is converted to QUIN. One day after 10 min of cerebral ischemia, the activities of kynureninase and 3-hydroxy-3,4-dioxygenase were increased in the hippocampus, but local QUIN levels and the activities of the indoleamine-2,3-dioxygenase and kynurenine-3-hydroxylase were unchanged. By days 2 and 4 after ischemia, however, the activities of all these enzymes in the hippocampus as well as QUIN levels were significantly increased. Kynurenine aminotransferase activity in the hippocampus was unchanged on days 1 and 2 after ischemia but was decreased on day 4, at a time when local kynurenic acid levels were unchanged. A putative precursor of QUIN, [13C6]anthranilic acid, was not converted to [13C6]QUIN in the hippocampus of either normal or 4-day post-ischemic gerbils. Gerbil macrophages stimulated by endotoxin in vitro converted L-[13C6]tryptophan to [13C6]QUIN. Kinetic analysis of kynurenine-3-hydroxylase activity in the cerebral cortex of postischemic gerbils showed that Vmax increased, without changes in Km. Systemic administration of pokeweed mitogen increased indoleamine-2,3-dioxygenase and kynureninase activities in the brain without significant changes in kynurenine-3-hydroxylase or 3-hydroxyanthranilate-3,4-dioxygenase activities. Increases in kynurenine-3-hydroxylase activity, in conjunction with induction of indoleamine-2,3-dioxygenase, kynureninase, and 3-hydroxyanthranilate-3,4-dioxygenase in macrophage infiltrates at the site of brain injury, may explain the ability of postischemic hippocampus to convert L-[13C6]tryptophan to [13C6]QUIN.[Abstract] [Full Text] [Related] [New Search]