These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pharmacological characterization of stably transfected Na+/H+ antiporter isoforms using amiloride analogs and a new inhibitor exhibiting anti-ischemic properties. Author: Counillon L, Scholz W, Lang HJ, Pouysségur J. Journal: Mol Pharmacol; 1993 Nov; 44(5):1041-5. PubMed ID: 8246907. Abstract: A fibroblast mutant cell line devoid of Na+/H+ exchange was used to stably express cDNAs encoding the NHE1, NHE2, and NHE3 Na+/H+ antiporters. Pharmacological studies using amiloride and two of its 5-N-substituted derivatives, 5-N-dimethyl amiloride and 5-N-(methyl-propyl)amiloride (MPA), demonstrate that the NHE1 isoform is the ubiquitously expressed amiloride-sensitive Na+/H+ antiporter (Ki of 0.08 microM for MPA), whereas the NHE2 and NHE3 isoforms exhibit a lower affinity for these inhibitors (Ki of 0.5 microM and 10 microM, respectively, for MPA) and are therefore likely to be members of the epithelial Na+/H+ exchanger's family. In addition, we have used this system to test a new Na+/H+ exchanger inhibitor possessing anti-ischemic properties on myocardial cells [(3-methylsulphonyl-4-piperidinobenzoyl) guanidine methanesulphonate]. This compound inhibits competitively NHE1 (Ki of 0.16 microM) with a much greater affinity than NHE2 and NHE3 (Ki of 5 microM and 650 microM, respectively) and therefore appears to be much more discriminative between these two classes of antiporter isoforms than the amiloride-related molecules. These results suggest an explanation for the observed difference of physiological effects between amiloride and HOE694, and identify this new inhibitor as a useful tool for studies of Na+/H+ exchange.[Abstract] [Full Text] [Related] [New Search]