These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lipopeptides activate Gi-proteins in dibutyryl cyclic AMP-differentiated HL-60 cells.
    Author: Klinker JF, Höer A, Schwaner I, Offermanns S, Wenzel-Seifert K, Seifert R.
    Journal: Biochem J; 1993 Nov 15; 296 ( Pt 1)(Pt 1):245-51. PubMed ID: 8250850.
    Abstract:
    Synthetic lipopeptides activate superoxide-anion (O2-) formation in human neutrophils in a pertussis-toxin (PTX)-sensitive manner, suggesting the involvement of G-proteins of the Gi family in the signal-transduction pathway. We compared G-protein activation by lipopeptides and the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (fMLP) in dibutyryl-cyclic-AMP-differentiated HL-60 cells. The lipopeptide (2S)-2-palmitoylamino-6-palmitoyloxymethyl-7-palmitoyloxy heptanoyl-SK4 (Pam3AhhSK4) and fMLP activated high-affinity GTPase, i.e. the enzymic activity of G-protein alpha-subunits, in HL-60 membranes in a time- and protein-dependent manner, but they had no effect on Mg(2+)-ATPase and Na+/K(+)-ATPase. Pam3AhhSK4 and fMLP increased Vmax. of GTP hydrolysis. Pam3AhhSK4 activated GTP hydrolysis with half-maximal and maximal effects at about 2 microM and 10 microM respectively. Other lipopeptides activated GTP hydrolysis as well. Lipopeptides were less effective than fMLP to activate GTPase. In membranes from PTX-treated cells, the stimulatory effects of lipopeptides and fMLP on GTPase were abolished. In N-ethylmaleimide-treated membranes, the relative stimulatory effect of Pam3AhhSK4 on GTP hydrolysis was enhanced, whereas that of fMLP was diminished. fMLP and Pam3AhhSK4 activated GTPase in an over-additive manner in N-ethylmaleimide-treated membranes. Unlike fMLP, Pam3AhhSK4 did not enhance incorporation of GTP azidoanilide into, and cholera-toxin-catalysed ADP-ribosylation of Gi-protein alpha-subunits in, HL-60 membranes and did not induce rises in cytosolic Ca2+ concentration. Pam3AhhSK4 and fMLP stimulated phosphatidic acid formation in a PTX-sensitive manner. Pam3AhhSK4 itself did not activate O2- formation, but potentiated the stimulatory effects of fMLP. Our data suggest that (i) lipopeptides activate the GTPase of Gi-proteins, (ii) lipopeptides and fMLP activate Gi-proteins differently, (iii) lipopeptides stimulate phospholipase D via Gi-proteins, and (iv) phosphatidic acid formation is not sufficient for activation of O2- formation.
    [Abstract] [Full Text] [Related] [New Search]