These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hyperpolarization induced by K+ channel openers inhibits Ca2+ influx and Ca2+ release in coronary artery.
    Author: Yanagisawa T, Yamagishi T, Okada Y.
    Journal: Cardiovasc Drugs Ther; 1993 Aug; 7 Suppl 3():565-74. PubMed ID: 8251426.
    Abstract:
    The vasodilating mechanisms of the K+ channel openers--cromakalim, pinacidil, nicorandil, KRN2391, and Ki4032--were examined by measurement of the cytoplasmic Ca2+ concentration ([Ca2+]i) using the fura-2 method in canine or porcine coronary arterial smooth muscle. The five K+ channel openers all produced a reduction of [Ca2+]i in 5 and 30 mM KCl physiological salt solution (PSS), the effects of which were antagonized by tetrabutylammonium (TBA) or glibenclamide, but failed to affect [Ca2+]i in 45 and 90 mM MCl-PSS. Cromakalim and Ki4032 only partially inhibited the 30 mM KCl-induced contractures, whereas pinacidil, nicorandil, and KRN2391 nearly abolished contractions produced by high KCl-PSS. The increased [Ca2+]i and force produced by a thromboxane A2 analogue, U46619, were inhibited by K+ channel openers and verapamil. In the absence of extracellular Ca2+, U46619 induced a transient increase in [Ca2+]i with a contraction, which is effectively inhibited by cromakalim and Ki4032. Their inhibitory effects were blocked by TBA and counteracted by 20 mM KCl-induced depolarization. Cromakalim and Ki4032 did not affect caffeine-induced Ca2+ release. Cromakalim reduced U46619-induced IP3 production and TBA blocked this inhibitory effect. Thus, cromakalim and Ki4032 are more specific K+ channel openers than pinacidil, nicorandil, and KRN2391. The vasodilation related with a reduction of [Ca2+]i produced by K+ channel openers is due to the hyperpolarization of the plasma membrane resulting in not only the closure of voltage-dependent Ca2+ channels but also inhibition of the production of IP3 and Ca2+ release from intracellular stores related to stimulation of the thromboxane A2 receptor.
    [Abstract] [Full Text] [Related] [New Search]