These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Toxityping rat brain calcium channels with omega-toxins from spider and cone snail venoms. Author: Adams ME, Myers RA, Imperial JS, Olivera BM. Journal: Biochemistry; 1993 Nov 30; 32(47):12566-70. PubMed ID: 8251474. Abstract: Different types of voltage-sensitive Ca2+ channels in the brain can be defined by specific ligands: L-type Ca2+ channels are uniquely sensitive to dihydropyridines, and N-type Ca2+ channels are selectively blocked by the Conus peptide omega-CTX-GVIA. Cloning data have revealed additional calcium channel types in mammalian brain for which selective ligands would be desirable. We describe binding experiments involving three newer ligands that block dihydropyridine- and omega-CTX-GVIA-resistant Ca channels: omega-Aga-IIIA and omega-Aga-IVA from venom of the spider Agelenopsis aperta and omega-CTX-MVIIC from Conus magus. [125I]omega-Aga-IVA binds with high affinity (IC50 = approximately 50 nM) to receptors in rat brain which may correspond to P-like calcium channels. A second high-affinity site (IC50 = approximately 1 nM) is defined by [125I]omega-CTX-MVIIC, proposed here to be on an "O"-type calcium channel. [125I]omega-Aga-IIIA targets homologous binding sites present on multiple Ca channel types. The IIIA sites overlap with the binding sites for [125I]omega-CTX-GVIA and [125I]omega-CTX-MVIIC. The IIIA sites do not overlap with the site defined by omega-Aga-IVA. Thus toxin ligands may be highly specific for a particular Ca channel (i.e., GVIA for the N-type channel) or exhibit broader specificity (i.e., omega-Aga-IIIA, which appears to bind L-, N-, P-, and O-type Ca2+ channels).[Abstract] [Full Text] [Related] [New Search]