These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphorylation of ribonucleotide reductase R2 protein: in vivo and in vitro evidence of a role for p34cdc2 and CDK2 protein kinases.
    Author: Chan AK, Litchfield DW, Wright JA.
    Journal: Biochemistry; 1993 Nov 30; 32(47):12835-40. PubMed ID: 8251505.
    Abstract:
    Ribonucleotide reductase is responsible for supplying the deoxyribonucleotides required for DNA synthesis and repair. The active enzyme consists of two dissimilar protein components called R1 and R2. Immunoprecipitation of R1 and R2 proteins from [32P]orthophosphate-labeled exponentially growing mouse L cells showed that the R2 protein but not the R1 protein of ribonucleotide reductase could be phosphorylated in vivo. Two-dimensional phosphopeptide mapping experiments of trypsin-digested R2 protein showed a major spot containing more than 90% of the total radioactivity and a minor spot with the remaining radioactivity. Phosphoamino acid analysis of R2 phosphorylated protein indicated that phosphorylation occurred exclusively on serine. Protein kinase C, cAMP-dependent protein kinase, p34cdc2, and CDK2 were capable of phosphorylating the R2 protein in vitro, whereas casein kinase II was not. To determine whether any of these enzymes could phosphorylate peptides observed to be phosphorylated in actively growing cells, tryptic phosphopeptide maps of R2 that had been phosphorylated in vitro were compared with maps of R2 that had been isolated from [32P]-labeled cells. Only the phosphopeptide maps obtained with p34cdc2 and CDK2 matched the pattern found in [32P]-labeled cells. Experiments in which tryptic digests from different samples were mixed prior to two-dimensional separation demonstrated comigration of phosphopeptides obtained by in vivo phosphorylation with phosphopeptides derived from p34cdc2 or CDK2 obtained by in vitro phosphorylations. These studies indicate that protein R2 phosphorylation may play an important role in the regulation of ribonucleotide reduction, DNA synthesis, and cell cycle progression, and suggest a potentially important p34cdc2 and/or CDK2 regulation point in DNA replication.
    [Abstract] [Full Text] [Related] [New Search]