These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: N-ethylmaleimide discriminates between two lysine transport systems in human erythrocytes. Author: Devés R, Angelo S, Chávez P. Journal: J Physiol; 1993 Aug; 468():753-66. PubMed ID: 8254535. Abstract: 1. The sulfhydryl reagent N-ethylmaleimide (NEM) was shown to inactivate the low affinity lysine transporter in human erythrocytes (system y+) without affecting the high affinity transporter (system y+L). 2. Pre-treatment of the cells with NEM reduced the rate of entry of L-[14C]lysine (1 microM) by approximately 50% (maximum effect). 3. NEM (0.2 mM) inhibited the NEM-sensitive component of the flux with mono-exponential kinetics. The inactivation rate constant (k, +/- S.E.M.) was 0.53 +/- 0.027 min-1 (25 degrees C). The substrate did not protect against inactivation. 4. Lysine self-inhibition experiments revealed two transport systems in untreated cells (half-saturation constants Km; +/- S.E.M.), 12.0 +/- 1.7 microM and 109 +/- 15.6 microM) and only one high affinity system in NEM-treated cells (Km 9.5 +/- 0.67 microM), indicating that NEM inactivates system y+. 5. The NEM-insensitive L-[14C]lysine influx (system y+L) was inhibited with high affinity by unlabelled neutral amino acids. The inhibition constant for L-leucine in sodium medium (Ki +/- S.E.M.) was 10.7 +/- 0.72 microM (37 degrees C). The system was also strongly inhibited by L-methionine, L-glutamine and with less affinity by L-phenylalanine and L-serine. N-methyl-L-leucine, L-proline and 2-amino-2-norbornane-carboxylic acid, a bicyclic analogue of leucine, did not exert a significant effect. 6. Lysine transport through system y+L occurred at the same rate in Na+, K+ or Li+ medium and the binding of lysine to the transporter was unaffected by Na+ replacement. 7. The interaction of system y+L with neutral amino acids was dependent on the cation present in the medium. The inhibition constant for leucine and glutamine increased approximately 90- and 60-fold respectively when Na+ was replaced by K+. Li+ was shown to be a very good substitute for Na+.[Abstract] [Full Text] [Related] [New Search]