These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of chronic alcohol consumption and of dehydration on the supraoptic nucleus of adult male and female rats.
    Author: Madeira MD, Sousa N, Lieberman AR, Paula-Barbosa MM.
    Journal: Neuroscience; 1993 Oct; 56(3):657-72. PubMed ID: 8255426.
    Abstract:
    Ethanol ingestion affects the hypothalamo-neurohypophysial system resulting in increased diuresis, dehydration and hyperosmolality. We studied the supraoptic nucleus, of the hypothalamus, in ethanol-treated rats, to determine if ethanol alone and/or the associated disturbances of water metabolism lead to structural alterations in a nucleus known to play a central role in fluid homeostasis. Groups of male and female rats were ethanol-treated until 12 and 18 months of age and compared with age-matched pair-fed controls. Twelve and 18-month-old control groups and 12-month-old water control groups (rats submitted to chronic dehydration) were also included in this study in an attempt to differentiate between the effects of undernutrition and dehydration/hyperosmolality, and the specific neurotoxic effects of ethanol. We estimated the volume of the supraoptic nucleus and the numerical density of its neurons and calculated the total number of supraoptic neurons. The volume of both supraoptic neurons and neuropil were also estimated. In immunostained material the ratio of vasopressin to oxytocin neurons and the cross-sectional areas of the two neuronal types were evaluated. There was marked neuronal loss in alcohol-treated rats, but the volume of the supraoptic nucleus was increased. The increase in the volume of the supraoptic nucleus correlated with and was due to increases in the volume was particularly marked for vasopressin neurons. No significant differences were found between controls and pair-fed controls in any of the parameters investigated. In water control rats, the volume of the supraoptic nucleus and of the supraoptic neurons and neuropil was also greater than in pair-fed controls. However, the variations found were not as marked as in ethanol-treated rats and there was no cell loss. These findings reveal, for the first time, that chronic ethanol consumption affects the morphology of supraoptic neurons and neuropil and, consequently, the structure of the entire supraoptic nucleus. Moreover, this study supports the view that ethanol has direct neurotoxic effects on supraoptic neurons because the alterations that occur are not mimicked in animals in which water metabolism alone is disturbed.
    [Abstract] [Full Text] [Related] [New Search]