These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Response of unmyelinated (C) polymodal nociceptors to thermal stimuli applied to monkey's face. Author: Beitel RE, Dubner R. Journal: J Neurophysiol; 1976 Nov; 39(6):1160-75. PubMed ID: 825619. Abstract: 1. The response of C polymodal nociceptors to thermal and mechanical stimuli applied to the monkey's face was recorded extracellulary in the trigeminal ganglion in rhesus monkeys anesthetized with sodium pentobarbital. Conduction velocities, determined from electrical stimulation of receptive fields (RFs), were in the range for unmyelinated C fibers (mean=0.82 m/s, n=20; SD=+/-0.17). With two exceptions cutaneous RFs were single spots (median=2 mm2; n=37) and usually were identical for thermal and mechanical stimuli. The median force threshold for the sample of units was 1.2 g (von Frey technique; n = 39; range = 0.07-8.5 g). 2. Discharges to thermal stimuli were investigated with a feedback-controlled contact thermode which permitted temperature changes less than or equal 12.0 degrees C/s. Thermal thresholds ranged from 38 degree to 49 degree C (median=46 degrees C; n=37), and maximum discharge frequencies were obtained in the noxious heat range (45-55 degrees C). For a graded series of 5 s duration stimuli from an adapting temperature of 35 degrees C, the number of impulses increased as a monotonic function of stimulus intensity over the range from threshold temperature to 50-53 degrees C. Many stimulus-response functions were positively accelerated, and linear regression analyses showed that most units examined were best fit by nonlinear functions. 3. The typical pattern of activity to 5 s duration temperature shifts into the noxious heat range was a short accelerating burst of impulses followed by deceleration to a lower rate of discharge prior to termination of the stimulus. The temporal profile of the discharge of impulses was virtually identical at different adapting temperatures. In units tested with 30 s duration stimuli at 2-6 degrees C above threshold, the mean frequency of discharge during the final 25 s was 1.46 impulses/s (n=6; SD=+/-0.89). 4. Application of noxious heat stimuli a few degrees above threshold temperature typically sensitized or enhanced the response of the unit to subsequent application of heat stimuli. The signs of sensitization consisted of a decrease in threshold temperature, increased frequency of discharge, decreased latency to the first impulse, and afterdischarges. Units failed to respond throughout the duration of 30 s stimuli if the final temperature exceeded 50 degrees C. Depressed responses were sometimes produced by application of intense (greater than or equal 55 degrees C) stimuli, presumably as a result of partial inactivation of the receptor. 5. In a correlative analysis, the latency and pattern of discharge in a sample of units were compared with escape responses in two monkeys to temperature shifts into the noxious heat range (49 and 51 degrees C). The analysis revealed that the discharge of C polymodal nociceptors alone cannot account for fast escape responses, but the discharge may contribute to escape responses which occur more than 3.5 s after the onset of stimulation.[Abstract] [Full Text] [Related] [New Search]