These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biosynthesis and cytoplasmic accumulation of a chlorinated catechol pigment during 3-chlorobenzoate aerobic co-metabolism in Pseudomonas fluorescens.
    Author: Fava F, Di Gioia D, Romagnoli C, Marchetti L, Mares D.
    Journal: Arch Microbiol; 1993; 160(5):350-7. PubMed ID: 8257280.
    Abstract:
    A strain of Pseudomonas fluorescens was capable of co-metabolizing 3-chlorobenzoic acid with the production of a chlorinated catechol black pigment. A peroxidase and another enzymatic activity referred to as a polyphenol oxidase were found to be involved in the oxidation of 4-chlorocatechol to 4-chloro-1,2-benzoquinone, i.e. in the production of highly reactive substrates for pigment formation. Therefore, P. fluorescens cells were seen to take an active part not only in 3-chlorobenzoate mineralization but also in overall pigment production. pH was found to be a key parameter in the regulation of the activity of P. fluorescens oxidoreductive enzymes. Ultrastructural investigations showed that electron dense granules of pigment were distributed throughout the cytoplasm of Pseudomonas fluorescens cells grown in presence of 3-chlorobenzoate, as confirmed also by Thiéry cytochemical investigations. In these cells, an extensive contraction of the cytoplasm as well as a significant damage to the cell wall after two days of incubation, suggested that pigment production caused a premature death of the cells accompanied by the leakage of the cell content. Pigment production seemed to occur mostly in the cytoplasmic context where the electron dense material accumulates until it is released in the medium after the cell lysis.
    [Abstract] [Full Text] [Related] [New Search]