These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses.
    Author: Arcaro A, Wymann MP.
    Journal: Biochem J; 1993 Dec 01; 296 ( Pt 2)(Pt 2):297-301. PubMed ID: 8257416.
    Abstract:
    Phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) is rapidly produced upon exposure of neutrophils to the chemoattractant N-formylmethionyl-leucylphenylalanine (fMLP), and has been proposed to act as a second messenger mediating actin polymerization and respiratory-burst activity. Here we present evidence that wortmannin, a known inhibitor of respiratory-burst activity, acts on PtdIns 3-kinase, the enzyme producing PtdInsP3 from PtdIns(4,5)P2. Pretreatment of 32P-labelled human neutrophils with 100 nM wortmannin totally abolished fMLP-mediated PtdInsP3 production, raised PtdInsP2 levels, and did not affect cellular PtdInsP and PtdIns contents. The inhibitory effect on PtdInsP3 formation in intact cells was dose-dependent, with an IC50 of approximately 5 nM. Similar results were obtained with PtdIns 3-kinase immunoprecipitated by antibodies against the p85 regulatory subunit: wortmannin totally inhibited PtdIns3P production in immunoprecipitates at concentrations of 10-100 nM (IC50 approximately 1 nM). These results illustrate the direct and specific inhibition of PtdIns 3-kinase by wortmannin. Since agonist-mediated respiratory-burst activation is most sensitive to wortmannin (IC50 = 12 nM), this suggests that agonist-mediated PtdInsP3 formation is indispensable for this cell response. Neutrophils pretreated with wortmannin develop oscillatory changes in F-actin content, but actin polymerization in response to fMLP is not inhibited. This, and the absence of PtdInsP3 under these conditions, are in agreement with a modulatory role for PtdInsP3 in cytoskeletal rearrangements, but imply that PtdInsP3 production is not a primary event triggering elongation of actin filaments in neutrophils.
    [Abstract] [Full Text] [Related] [New Search]