These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intoplicine (RP 60475) and its derivatives, a new class of antitumor agents inhibiting both topoisomerase I and II activities. Author: Riou JF, Fossé P, Nguyen CH, Larsen AK, Bissery MC, Grondard L, Saucier JM, Bisagni E, Lavelle F. Journal: Cancer Res; 1993 Dec 15; 53(24):5987-93. PubMed ID: 8261412. Abstract: Intoplicine (RP 60475, NSC 645008) is an antitumor derivative in the 7H-benzo[e]pyrido[4,3-b]indole series which is now being tested in clinical trials. Intoplicine strongly binds DNA (KA = 2 x 10(5) M-1) and thereby increases the length of linear DNA. These properties are consistent with DNA unwinding by intoplicine. Intoplicine was found to be a dual topoisomerase I and II inhibitor, with DNA sites of enzyme inhibition being different for these two enzymes. In this study, 22 analogues of intoplicine were evaluated for their effects on topoisomerase I- and II-mediated DNA cleavage reactions by using enzymes purified from calf thymus. Site-specific DNA cleavage mediated by topoisomerase I was observed with 7H-benzo[e]pyrido[4,3-b]indole derivatives but not with 11H-benzo[g]-pyrido[4,3-b]indole derivatives. Site-specific DNA cleavage mediated by topoisomerase II occurred with derivatives having hydroxyl groups at the 3-position on the 7H-benzo[e]pyrido[4,3-b]indole ring or at the 4-position on the 11H-benzo[g]pyrido[4,3-b]indole ring. Study of the relationships between the in vivo antitumor activity on P388 leukemia and the topoisomerase I- and/or II-mediated DNA cleavage activity revealed that the most highly active antitumor compounds possessed both topoisomerase I-and II-inhibitory properties. Compounds selectively inhibiting either topoisomerase I or II were less active. These results suggest that dual topoisomerase I and II inhibition is critical for the antitumor activity of this new series of antitumor compounds.[Abstract] [Full Text] [Related] [New Search]